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Abstract
We give a criterion for a positive mapping on the space of operators on a
Hilbert space to be indecomposable. We show that this criterion can be applied
to two families of positive maps. These families of maps can then be used
to form separability criteria for bipartite quantum states that can detect the
entanglement of bound entangled quantum states.

PACS numbers: 03.67.Mn, 03.65.Ud, 02.30.Tb

1. Introduction

The phenomenon of entanglement [1] in quantum mechanics plays a central role in quantum
information theory and quantum computation [2–6]. However, for a general bipartite mixed
quantum state, it is still not known how to determine whether such a state is entangled or
separable. Since the results of many experiments are not pure but in fact mixed states, this is a
problem that is of both fundamental and practical importance within quantum mechanics and
quantum information theory.

One of the most studied mathematical tools for determining whether a quantum state is
entangled or not is the theory of positive maps of operators on a Hilbert space [7]. In particular,
the construction of indecomposable positive maps is a topic of particular importance, because
they can be used to form strong necessary criteria for a quantum state to be separable. Although
much study has been dedicated to this topic, only specific examples of these maps have been
found [8–21, 29], and there are no general constructions of non-decomposable maps.

Størmer gave a necessary and sufficient condition for a positive map to be decomposable
[22]; however, in practice, this condition is very hard to verify. What we give here is a sufficient
condition for a positive linear map to be indecomposable. Furthermore, this condition only
requires the linear map to be expressible in a certain form, and so is easier to use in practice.

This paper proceeds as follows. In section 2, we recall some of the known facts about
entanglement of quantum states and the role of positive maps in showing quantum states
are entangled. In section 3, we state and prove our general criterion for a positive map to
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be indecomposable. In section 4, we give two families of maps that can be shown to be
indecomposable using this criterion. We conclude with a discussion in section 5.

2. Entanglement in bipartite systems and positive maps

2.1. Entangled and separable quantum states

We will begin by recalling some basic facts about entanglement of bipartite quantum systems.
Let Hi (i = 1, 2) be finite-dimensional Hilbert spaces. We define B(H) to be the set of
(bounded) operators on a Hilbert space H. A bipartite quantum state ρ ∈ B(H1 ⊗ H2) is said
to be separable [23] if and only if ρ can be written in the form

ρ =
k∑

i=1

piρ
(1)
i ⊗ ρ

(2)
i (1)

where pi > 0,
∑

i pi = 1 and ρ
(j)

i ∈ B(Hj ) are density matrices on the individual parts of
the bipartite system. A bipartite quantum state is said to be entangled if it is not separable.

2.2. Positive maps and entanglement

We will also recall some basic facts about positive maps, and how they can be used to show
that a bipartite quantum state is entangled [7]. Let � : B(H) → B(H) be a linear map. � is
said to be a positive map if for all Hermitian σ ∈ H such that σ � 0, then �(σ) is Hermitian
and �(σ) � 0. A stronger condition on � is that of complete positivity: � is completely
positive if, for all Hilbert spaces K, the map I ⊗ � : B(K ⊗ H) → B(K ⊗ H) (where I is
the identity map) is also positive. We say � is completely co-positive if � ◦ T is completely
positive, where T is the transpose map. Due to work by Choi [24] and Kraus [25], it has been
shown that a completely positive map � : B(H) → B(H) has a decomposition of the form
�(ρ) = ∑

i ViρV
†
i . The operators Vi ∈ B(H) are known as Kraus operators.

The existence of positive maps that are not completely positive allows us to use these
maps to produce sufficient conditions for a bipartite quantum state ρ ∈ B(H1 ⊗ H2) to be
separable, i.e., for ρ to have a decomposition of the form of (1). Then, for any positive map
� : B(H2) → B(H2),

(I ⊗ �)(ρ) =
∑

i

piρ
(1)
i ⊗ �

(
ρ

(2)
i

)
� 0. (2)

Hence if (I ⊗ �)(ρ) � 0, the bipartite state ρ must be entangled. We say that this test detects
the entanglement of ρ.

An example of a positive linear map that is not completely positive is the transpose
map. This leads to the necessary partial transpose condition for separability [27], that
(I ⊗ T )(ρ) � 0. For a 2 ⊗ 2 or 2 ⊗ 3 bipartite system1, this condition is sufficient as well
[7, 28, 29]. More generally, there exist entangled states that do not violate this condition.
These states are known as bound entangled states and play an important role in the theory of
quantum information [26].

The partial transpose condition is computationally a very simple condition to verify, and
so it is important to know when a condition for separability produced from a positive map
does not detect any states that the partial transpose condition does not detect. A positive map
� : B(H) → B(H) is said to be decomposable if it can written as the sum of a completely

1 The notation d1 ⊗ d2 for d1, d2 ∈ N denotes the dimensions of the individual Hilbert spaces.
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positive and a completely co-positive map. For such maps, by the definition of completely
positive and completely co-positive,

(I ⊗ T )(ρ) � 0 ⇒ (I ⊗ �)(ρ) � 0, (3)

i.e. the partial transpose condition detects any entanglement that the condition formed from �

does. A positive map is called indecomposable if such a decomposition for � does not exist.
Separability criteria formed from indecomposable maps are hence important because they

are the only criteria formed from positive maps that can be used to detect bound entangled
quantum states, and a number of examples exist in the literature [8–21, 29].

Størmer gave the following necessary and sufficient condition for a linear map to be
decomposable:

Theorem 1. Let � : B(H) → B(H) be a linear map. Then � is decomposable if and only if,
for all n ∈ N, and all positive operators ρ ∈ B(Cn ⊗ H) such that (T ⊗ I )(ρ) is also positive,
(I ⊗ �)(ρ) is also positive.

Since we do not know how to completely characterize the positive operators given in
the statement of the theorem, in practice we cannot use this theorem to show a map is
decomposable. However, in some cases, the theorem has been used to show a positive map
is not decomposable, by constructing such a positive operator ρ such that (I ⊗ �) � 0. The
condition we will give in section 3 will not require the construction of such an operator.

2.3. Entanglement witnesses

We conclude our review of positive maps by introducing the notion of an entanglement witness
and studying their relation to positive maps. An operator W ∈ B(H1 ⊗H2) is an entanglement
witness if 〈ψ |W |ψ〉 � 0 for all |ψ〉 = |ψ1〉|ψ2〉. Hence, if a bipartite state ρ ∈ B(H1 ⊗ H2)

is such that Tr(Wρ) < 0 for some entanglement witness W,ρ must be entangled.
Sudarshan et al [30], Choi [8] and Jamiołkowski [31] independently discovered that there

is a one-to-one correspondence between positive maps and entanglement witnesses. This can
be seen in the following way: let H be a finite-dimensional Hilbert space with orthonormal
basis {|k〉}. For any linear map � : B(H) → B(H), we can define a 4-index array �ijkl by

�(|k〉〈l|) =
∑
k,l

�ijkl|i〉〈j |. (4)

This 4-index array is essentially what defines an entanglement witness when � is positive.
The Jamiołkowski form of this correspondence [31] can be written in the form

W� = (� ⊗ I )

∑
i,j

|k〉〈l| ⊗ |k〉〈l|
 =

∑
ijkl

�ijkl|i〉〈j | ⊗ |k〉〈l| (5)

which when � is positive defines an entanglement witness W� ∈ B(H⊗H) [31]. Furthermore,

(i) if �(ρ) = ∑
a VaρV

†
a (completely positive), then the associated entanglement witness is

W� =
∑

a

∑
ijkl

(Va)ik(Va)
∗
j l|i〉〈j | ⊗ |k〉〈l| =

∑
a

|Va〉〈Va| (6)

where if V ∈ B(H), then |V 〉 = ∑
i,j Vij |i〉|j 〉 ∈ H ⊗ H;
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(ii) if �(ρ) = ∑
a Vaρ

T V
†
a (completely co-positive), then the associated entanglement

witness is

W� =
∑

a

∑
ijkl

(Va)il(Va)
∗
jk|i〉〈j | ⊗ |k〉〈l| =

∑
a

|Va〉〈Va|TB (7)

where TB represents partial transposition of the second system in the tensor product H⊗H
with respect to the chosen basis.

All of these observations together give us the following result (also proved in, e.g., [32]):

Lemma 1. If � : B(H) → B(H) is a decomposable positive map, then the associated
entanglement witness W� can be expressed in the form

W� = P + QTB (8)

where P,Q are positive operators.

3. A criterion for indecomposability

3.1. The general idea

When given the entanglement witness W� associated with a positive map �, the difficulty in
trying to show whether we can write W� in the form of (8) is that such a decomposition may
not be unique, and certain terms in W� may arise from either the P or the QTB term. Two
examples are as follows:

(i) separable terms, e.g.,2

|a〉〈a| ⊗ |b〉〈b| = |a〉〈a| ⊗ |b∗〉〈b∗|T = (|a〉〈a| ⊗ |b∗〉〈b∗|)TB ; (9)

(ii) ‘bound entangled’ terms, i.e., if P ∈ B(H ⊗ H) is entangled and P TB is positive, then
p = (P TB )TB .

More generally, if P (or similarly Q) contains terms that are positive under a partial
transpose, then such terms can arise from either term in the decomposition (8).

What we aim to do here is to present conditions on the positive map � that mean this
ambiguity cannot arise, and if we can write W� in the form of (8), then we will know which
terms should arise from the P term and those which must arise from the QTB term. The idea
will then be to show that under further conditions P or Q cannot be positive, contradicting the
form of the expression of (8), and hence forcing � to be indecomposable.

3.2. Statement and proof of criterion

Let us set up some preliminaries. Let V be a linear subspace of B(H) of dimension N, and
from this let us define the subspace W(V) ⊂ H ⊗ H by

W(V) = {|V 〉 | V ∈ V} (10)

and furthermore we denote the subspace orthogonal to W(V) by W(V)⊥, i.e.,

W(V)⊥ = {|ψ〉 ∈ H ⊗ H | 〈V |ψ〉 = 0 ∀|V 〉 ∈ W(V)}. (11)

With these ideas in place, we are ready to state the main result of this paper.

2 The stars in the below expression denote complex conjugation in the standard basis i.e. if |x〉 = ∑
xk |k〉, then

|x∗〉 = ∑
x∗

k |k〉.
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Theorem 2. Suppose � : B(H) → B(H) is a positive map of the form

�(ρ) =
N∑

m,n=1

λmnVmρV †
n (12)

where the matrix L defined by λmn is Hermitian, and the set {Vk}Nk=1 forms a basis for a
subspace V ⊂ B(H) such that the subspace W(V) ⊂ H⊗H defined as above has the property
that for all non-zero Q ∈ B(H) positive, there exists |ψ〉 ∈ W(V)⊥ such that 〈ψ |QTB |ψ〉 > 0.
Then if L has a negative eigenvalue, then � is not a decomposable map.

Proof. The entanglement witness W� associated with � is given by

W� =
N∑

m,n=1

λmn|Vm〉〈Vn|. (13)

Now suppose � is decomposable, i.e., W� = P + QTB with P,Q > 0. By the definition of
W(V),W� ∈ B(W(V)). Furthermore, we can write P = W − QTB . However, by hypothesis,
there exists |ψ〉 ∈ W(V)⊥ such that 〈ψ |QTB |ψ〉 > 0, and hence

〈ψ |P |ψ〉 = 〈ψ |W |ψ〉 − 〈ψ |QTB |ψ〉 (14)

= −〈ψ |QTB |ψ〉 < 0 (15)

where the first expectation is zero because |ψ〉 ∈ W(V)⊥ while W� ∈ B(W(V)). This
contradicts the fact that P is a positive operator, and so necessarily Q = 0. Hence, W� = P ,
i.e., W� should be a positive operator. However, if the matrix L defined from λmn has a
negative eigenvalue, so does W�, giving us a contradiction. �

To conclude this subsection, let us make a few observations about theorem 2. First,
theorem 2 is concerned with functions of ρ. However, all of these statements hold equally for
functions of ρT here, because it is clear from the definition of a decomposable map that if �

is a decomposable map, then so is the map � ◦ T . In terms of the entanglement witness, the
positive P term would be restricted to be zero.

Secondly, it is worth noting that we did not simply assert thatW(V) contained no operators
with a positive partial transpose, but we asserted a condition which is at least as strong as this
instead. This issue is discussed in section 5.

The major difficulty in making use of Størmer’s condition for decomposability
(theorem 1) to prove a positive map is decomposable is that we do not have a complete
characterization or understanding of all the required positive operators, making it difficult to
utilize. On first sight, it would appear that to prove a given positive map is indecomposable
with this criterion, we have a similar problem—it is not clear initially how difficult it will be to
prove the conditions within the criterion; indeed, it is not even immediately obvious that any
subspace W(V) can be constructed. However, we will see from the constructed examples in
section 4 that such subspaces do exist and that the conditions can be proved using techniques
from linear algebra.

3.3. Extensions of the criterion

When we have a more general positive map of the form

�(ρ) =
N∑

m,n=1

λmnUmρU †
n +

N ′∑
p,q=1

λ̃pqVpρT V †
q (16)
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restricting terms is not possible in the same way, as we can see in the following example.
Define

|�±〉 = |0〉|0〉 ± |1〉|1〉, (17)

|�±〉 = |0〉|1〉 ± |1〉|0〉. (18)

It is easy to verify that

(|�−〉〈�−|)TB = |0〉〈0| ⊗ |1〉〈1| + |1〉〈1| ⊗ |0〉〈0| + 1
2 (|�−〉〈�−| − |�+〉〈�+|) (19)

and so

W = |�+〉〈�+| + 1
2 (|�−〉〈�−|)TB = |0〉〈0| ⊗ |1〉〈1| + |1〉〈1| ⊗ |0〉〈0| + 1

2 |�−〉〈�−|. (20)

This kind of example shows that a similar restriction criterion to that given in theorem 2 is
more difficult to establish in this more general case. It can be shown that the two subspaces
W = {α|�−〉〈�−| | α ∈ R} and W ′ = {α|�+〉〈�+| | α ∈ R} satisfy the requirements of
theorem 2 for W(V).3 However, in the decomposition W = P + QTB , we can ‘mix up’ the
terms in some manner to get a different decomposition. It follows that we need some stronger
conditions here to restrict the decomposition of W , and we do not attempt in this paper to give
such extra conditions.

However, if a decomposable map M : B(H) → B(H) exists such that

M(�(ρ)) =
N∑

m,n=1

λmnUmρU †
n (21)

then we can apply theorem 2 to this. If from this we can show that M ◦ � is indecomposable,
then so is �, since if � is decomposable, the decomposability of M would imply that M ◦� is
decomposable. Similarly, the existence of a decomposable map N : B(H) → B(H) such that

N(�(ρ)) =
N ′∑

p,q=1

λ̃pqVpρT V †
q (22)

could be used, via theorem 2, to attempt to show that � is not decomposable.

4. Families of indecomposable maps

In this section, we are going to present two families of positive maps that we can show are
indecomposable. At first both families appear to have no common structure, but each map in
both families can be shown to be indecomposable by the above theorem.

4.1. The extended reduction criterion

First, we will show how the reduction criterion [32, 33], which arises from a decomposable
map, can be improved upon by modifying the decomposable map so that it is still positive but
no longer decomposable4.

3 This fact is proved in the arguments contained in theorem 5 for the first subspace; the property holds for the second
subspace by a similar argument. We do not include a full proof here as we are simply trying to illustrate the added
difficulty in restricting the decomposition of W in this more general case.
4 During the preparation of this paper, this construction also appeared in [35], but is presented from a slightly different
perspective.
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4.1.1. The reduction criterion and its extension. Let dimH = d, with a standard orthonormal
basis {|k〉}d−1

k=0 . The reduction map R : B(H) → B(H) is defined by

R(σ) = Tr(σ )1 − σ (23)

where σ ∈ B(H). It can be shown that this is a positive but not a completely positive map,
and so if ρ ∈ B(H1 ⊗ H2) is a bipartite quantum state, then

(I ⊗ R)(ρ) = ρ1 ⊗ 12 − ρ � 0, (24)

(where ρ1 = Tr2(ρ) is a reduced state of ρ and 12 is the identity matrix in B(H2)) is a necessary
condition for ρ to be separable. This condition is known as the reduction criterion [32, 33].
However, the reduction map is a completely co-positive map and can be expressed as follows:

Theorem 3 ([34]). The reduction map R : B(H) → B(H) is decomposable and can be written
in the form (for σ ∈ B(H))

R(σ) =
∑

0�k<l�d−1

Aklσ
T A

†
kl (25)

where Akl = |k〉〈l| − |l〉〈k|.
And so the reduction criterion is weaker than the partial transpose condition.

Let σ = |ψ〉〈ψ | for some |ψ〉 ∈ H. Let {|ψk〉}dk=1 be any orthonormal basis for H, such
that |ψ1〉 ≡ |ψ〉. Then we can write

R(σ) = 1 − |ψ〉〈ψ | =
d∑

k=2

|ψk〉〈ψk|, (26)

i.e. we can write R(σ) as the sum of d − 1 orthogonal projections onto a state orthogonal to
|ψ〉. Now suppose that we can find a positive linear map S : B(H) → B(H) such that S(σ) =
|ψ⊥〉〈ψ⊥|, where 〈ψ⊥|ψ〉 = 0. Then, by letting |ψ2〉 = |ψ⊥〉, we note that

R(σ) − S(σ) =
d∑

k=3

|ψk〉〈ψk|, (27)

i.e. we still have a positive linear map. Since both R and S are linear, this construction also
works for σ being a general mixed state.

The upshot of all this is that if we can construct a map S as above, then we can construct
a new positive map RE = R − S, such that, if σ � 0, then RE(σ) � 0 ⇐ R(σ) � 0. We
will call a map RE constructed in this way an extended reduction map. The next step of this
construction is to explicitly show how to construct such a map S.

Let us take a general normalized state |ψ〉 = ∑d−1
k=0 αk|k〉. When d = 2, there is (up

to an overall phase) a unique state |ψ⊥〉 = α∗
1 |0〉 − α∗

0 |1〉 orthogonal to |ψ〉 = α0|0〉 +
α1|1〉. This state can be written as |ψ⊥〉 = U |ψ∗〉, where U is the antisymmetric unitary
operator |0〉〈1| − |1〉〈0|. We will try and generalize such an operation to a Hilbert space of
dimension d.

Lemma 2. Let |ψ⊥〉 = M|ψ∗〉, where M ∈ B(H). Then 〈ψ⊥|ψ〉 = 0 for all |ψ〉 if and only
if M = −MT .

Proof. Let M = ∑
k,l Mkl|k〉〈l|. Then,

〈ψ⊥|ψ〉 =
d−1∑
k,l=0

M∗
klαlαk =

d−1∑
k=0

M∗
kkα

2
k +

∑
0�k<l<d

(M∗
kl + M∗

lk)αlαk (28)
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which is zero for all |ψ〉 if and only if the coefficients for each term is zero, i.e., Mkl = −Mlk

for all k, l = 0, . . . , d − 1, which is equivalent to M = −MT . �

We should note that in lemma 2 we only required M to be a linear operator. For our
construction of the map S however, we need that 〈ψ⊥|ψ⊥〉 = 1, i.e., we also require M to be
unitary.

Putting all of this together, and making the observation that for Hermitian operators
σ, σ T = σ ∗, we obtain the following theorem:

Theorem 4. Let U ∈ B(H) be unitary and antisymmetric, and let RE : B(H) → B(H) be a
linear map defined by RE(σ) = Tr(σ )1 − σ − UσT U †. Then RE is a positive map5.

We note that antisymmetric unitaries only exist in even dimensions, i.e.,

Lemma 3. Let M ∈ B(H) be antisymmetric, and dimH = d be odd. Then M cannot be
unitary.

Proof. If M is unitary, all of its eigenvalues are non-zero. However, the eigenvalues of
an antisymmetric matrix M occur in pairs ±λ: since M is antisymmetric, it is normal
and hence diagonalizable, i.e., M = ∑

i λi |ψi〉〈ψi |, where 〈ψi |ψj 〉 = δij . However,
since (|ψ〉〈ψ |)T = |ψ∗〉 〈ψ∗|, we also have M = −MT = ∑

i (−λi)
∣∣ψ∗

i

〉 〈
ψ∗

i

∣∣, i.e., if
M|ψ〉 = λ|ψ〉, then M|ψ∗〉 = −λ|ψ∗〉. Hence if d is odd, M must have a zero eigenvalue and
hence cannot be unitary. �

When d is even, we can construct antisymmetric unitaries easily. The unitary U = V DV T

is antisymmetric, where V ∈ U(d) is an arbitrary real orthogonal matrix and D is the
antisymmetric unitary operator:

D =
d/2−1∑
k=0

eiφk (|2k〉 〈2k + 1| − |2k〉 〈2k + 1|) (29)

where φk ∈ [0, 2π ]. The conjugation by V on D means that U is unitary, and UT = V DT V T =
−V DV T = −U , i.e., U is antisymmetric.

4.1.2. Indecomposability of the extended reduction map. Here, we use theorem 2 to show
that the extended reduction map is indecomposable:

Theorem 5. Let dimH = d > 2 be even. The positive map RE : B(H) → B(H) defined
by R(σ) = Tr(σ )1 − σ − UσT U †, where U is an antisymmetric unitary operator, is
indecomposable.

Proof. For 0 � k < l < d, define Akl = |k〉〈l| − |l〉〈k|. Since U is antisymmetric, we can
write U = ∑

k<l UklAkl . Then, using theorem 3, we can rewrite RE(σ) in the form

RE(σ) =
∑

0�k<l�d−1

Aklσ
T A

†
kl −

∑
i<j,k<l

UijU
∗
klAijσ

T A
†
kl (30)

=
∑

i<j,k<l

�(i,j),(k,l)Aijσ
T A

†
kl (31)

5 Readers may have thought that it would be possible to subtract off two projectors from the right-hand side of (26), so
we end up with a map RE(σ) = Tr(σ )1−σ −U1σ

T U
†
1 −U2σ

T U
†
2 , with U1, U2 unitary and antisymmetric. However,

for this to work we would need the terms subtracted off to be orthogonal, i.e., we would need 〈ψ∗|U †
2U1|ψ∗〉 = 0

for all |ψ〉, so U
†
2U1 = 0, which is impossible for unitary matrices because their rank is maximal.
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where �(i,j),(k,l) is defined by

�(i,j),(k,l) =
{

1 − |Uij |2 (i, j) = (k, l)

−UijU
∗
kl (i, j) �= (k, l)

. (32)

Using the notation of theorem 2, V is spanned by the set of antisymmetric matrices
{Akl}0�k<l<d , and so W(V) has a basis {|�−

kl〉 ≡ |k〉|l〉 − |l〉|k〉}0�k<l<d . Furthermore, the
matrix L is a d(d − 1)/2 × d(d − 1)/2 matrix defined by �(i,j),(k,l), where we consider
the pairs (i, j) and (k, l) as the row and column indices. However, if we define the vector
|�〉 = ∑

i<j Uij |(i, j)〉, then we have that L = I−|�〉 〈�|, and since 〈�|�〉 = ∑
i<j |Uij |2 =

1
2

∑
i,j |Uij |2 = d

2 , L has one negative eigenvalue 1− d
2 . Hence to show RE is indecomposable,

we must show that for all Q ∈ B(H) there exists |ψ〉 ∈ W(V)⊥ such that 〈ψ |QTB |ψ〉 > 0. In
this case,

W(V)⊥ = span
({|k〉|k〉}0�k<d ∪ {∣∣�+

kl

〉 ≡ |k〉|l〉 + |l〉|k〉}0�k<l<d

)
. (33)

First we note that, for 0 � k < d,

〈k|〈k|QTB |k〉|k〉 = 〈k|〈k|Q|k〉|k〉 � 0. (34)

If 〈k|〈k|Q|k〉|k〉 > 0, we are done. If not, then since Q is positive, 〈k|〈k|Q|l〉|l〉 = 0 for all
0 � k, l < d. Now define |�±

kl 〉 = |k〉|k〉± |l〉|l〉 for 0 � k, l < d, k �= l. It is simple to verify
that(∣∣�+

kl

〉 〈
�+

kl

∣∣)TB = |k〉〈k| ⊗ |l〉 〈l| + |l〉 〈l| ⊗ |k〉〈k| + 1
2

(∣∣�+
kl

〉 〈
�+

kl

∣∣ − ∣∣�−
kl

〉 〈
�−

kl

∣∣) (35)

and hence 〈
�+

kl

∣∣QTB
∣∣�+

kl

〉 = Tr(QTB
∣∣�+

kl

〉 〈
�+

kl

∣∣) (36)

= Tr
(
Q

( ∣∣�+
kl

〉 〈
�+

kl

∣∣ )TB
)

(37)

= 〈k|〈l|Q|k〉|l〉 + 〈l|〈k|Q|l〉|k〉 � 0 (38)

where in the last expression the expectations of Q with respect to
∣∣�±

kl

〉
disappear because

〈k|〈k|Q|l〉|l〉 = 0. If again all of these expectations are zero, this would imply that
〈k|〈l|Q|k〉|l〉 = 0 for all k, l, and hence Tr(Q) = 0, implying Q = 0. This completes
the proof. �

4.2. The positive maps of Piani

In [15], a family of maps is proved to be positive. These maps are given by the following
theorem:

Theorem 6 ([15]). Let H1,H2 be Hilbert spaces of dimension d1, d2, respectively, and,

for k = 1, 2, let
{
F (k)

µ

}d2
k

µ=1 be Hermitian bases for B(H1),B(H2), respectively, satisfying

Tr
(
F (k)

ν F (k)
µ

) = δµν . Define �k : B(Hk) → B(Hk) by

�k(ρ) =
d2

i∑
µ=1

λ(k)
µ F (k)

µ ρF (k)
µ (39)

and � : B(H1 ⊗ H2) → B(H1 ⊗ H2) by � = �1 ⊗ I2 + I1 ⊗ �2. Then, if λ
(2)

d2
2

< 0, and

λ(k)
µ �

∣∣λ(2)

d2
2

∣∣ for all µ when k = 1 and all µ �= d2
2 when k = 2, then � is a positive map.



14128 W Hall

In [15], bound entangled states were constructed to show a subset of these maps was
indecomposable. However, theorem 2 can be used to show that a much larger class of these
maps is indecomposable.

Theorem 7. Let � be defined as in theorem 6, with the additional constraint on the

Hermitian bases
{
F (k)

µ

}d2
k

µ=1(k = 1, 2) that F
(k)
1 = Ik for k = 1, 2, respectively. Then �

is indecomposable.

Proof. DefineH = H1⊗H2, with standard orthonormal basis {|k〉}d1−1
k=0 , {|l〉}d2−1

l=0 , respectively.
For ρ ∈ B(H), we may write

�(ρ) =
d2

1∑
µ=1

λ(1)
µ

(
F (1)

µ ⊗ I2
)
ρ

(
F (1)

µ ⊗ I2
)†

+
d2

2∑
µ=1

λ(2)
µ

(
I1 ⊗ F (2)

µ

)
ρ
(
I1 ⊗ F (2)

µ

)†
(40)

= (
λ

(1)
1 + λ

(2)
1

)
ρ +

d2
1∑

µ=2

λ(1)
µ

(
F (1)

µ ⊗ I2
)
ρ

(
F (1)

µ ⊗ I2
)†

+
d2

2∑
µ=2

λ(2)
µ

(
I1 ⊗ F (2)

µ

)
ρ
(
I1 ⊗ F (2)

µ

)†
. (41)

Using the notation of theorem 2, the subspace V has a basis {I1 ⊗ I2} ∪ {
F (1)

µ ⊗ I2
}d2

1

µ=2 ∪{
I1 ⊗ F (2)

µ

}d2
2

µ=2. Hence,

V = {M1 ⊗ I2 + I1 ⊗ M2 | Mi ∈ B(Hi ); i = 1, 2}. (42)

Furthermore, L = diag
(
λ

(1)
1 + λ

(2)
1 , λ

(1)
2 , . . . , λ

(1)

d2
1
, λ

(2)
2 , . . . , λ

(2)

d2
2

)
, and so L is not positive.

Let us now consider W(V). First, define |�(di)
+〉 = ∑di−1

m=0 |m〉|m〉 ∈ Hi ⊗ Hi (the
maximally entangled state). For notational convenience, we will rearrange the tensor product
H1 ⊗ H2 ⊗ H1 ⊗ H2 into the order H1 ⊗ H1 ⊗ H2 ⊗ H2 (as we may). The subspace
W(V) ∈ B(H1 ⊗H1 ⊗H2 ⊗H2) is a d2

1 +d2
2 −1 dimensional subspace with a basis consisting

the following vectors:

(i) the vector |�(d1)
+〉|�(d2)

+〉;
(ii) a basis of d2

1 − 1 vectors in the subspace
{|�(d1)

+〉∣∣�⊥
2

〉 | 〈�⊥
2 |�(d2)

+〉 = 0
}
;

(iii) a basis of d2
2 − 1 vectors in the subspace

{∣∣�⊥
1

〉|�(d2)
+〉 | 〈�⊥

1 |�(d1)
+〉 = 0

}
.

Hence, we can write

W(V)⊥ = span
({∣∣�⊥

1

〉∣∣�⊥
2

〉 | 〈�⊥
i |�(di)

+〉 = 0, i = 1, 2}) . (43)

In the tensor product H1 ⊗ H1 ⊗ H2 ⊗ H2, let us relabel the indices A1, B1, A2, B2
from left to right. Then, from theorem 2 all that remains to be shown is that for all
Q ∈ B(HA1 ⊗ HB1 ⊗ HA2 ⊗ HB2), there exists |ψ〉 ∈ W(V)⊥ such that 〈ψ |QTB |ψ〉 > 0,
where TB now represents the partial transposition of systems B1 and B2 together. From here
on, we will place indices on bra and kets to indicate which Hilbert space each belongs to.

First we observe that if (for i = 1, 2) 0 � ki, li < di; ki �= li , then |k1〉A1|l1〉B1

|k2〉A2|l2〉B2 ∈ W(V)⊥. We also note that

〈k1|A1〈l1|B1〈k2|A2〈l2|B2Q
TB |k1〉A1|l1〉B1|k2〉A2|l2〉B2

= 〈k1|A1〈l1|B1〈k2|A2〈l2|B2Q|k1〉A1|l1〉B1|k2〉A2|l2〉B2 � 0. (44)
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If any of these quantities are positive then we are done. If all of these expectations are zero,
then since Q is positive, necessarily

〈k1|A1〈l1|B1〈k2|A2〈l2|B2Q|k′
1〉A1|l′1〉B1|k′

2〉A2|l′2〉B2 = 0 (45)

(where for i = 1, 2, 0 � k′
i , l

′
i < di; k′

i �= l′i). Furthermore, let us define

|�⊥
i 〉 =

di−1∑
m=0

ωm
di
|m〉Ai |m〉Bi ∈ Hi ⊗ Hi (46)

for i = 1, 2, where ωd = exp(2π i/d). It is easy to verify that
〈
�⊥

i |�+(di)
〉 = 0, and hence∣∣�⊥

1

〉∣∣�⊥
2

〉 ∈ W(V)⊥. Furthermore,

∣∣�⊥
i

〉 〈
�⊥

i

∣∣TBi =
di−1∑
m=0

|m〉 〈m|Ai ⊗ |m〉 〈m|Bi + Pi (47)

where Pi has support on the subspace spanned by {|k〉Ai |l〉Bi}0�k,l<d;k �=l . Hence,〈
�⊥

1

∣∣〈k2|A2〈l2|B2Q
TB

∣∣�⊥
1

〉|k2〉A2|l2〉B2 (48)

= Tr
(
QTB

(∣∣�⊥
1

〉 〈
�⊥

1

∣∣ ⊗ |k2〉 〈k2|A2 ⊗ |l2〉 〈l2|B2

))
(49)

= Tr
(
Q

(∣∣�⊥
1

〉 〈
�⊥

1

∣∣ ⊗ |k2〉 〈k2|A2 ⊗ |l2〉 〈l2|B2

)TB
)

(50)

=
d1−1∑
m=0

〈m|A1〈m|B1〈k2|A2〈l2|B2Q|m〉A1|m〉B1|k2〉A2|l2〉B2 � 0 (51)

where any expectations from the P1 term disappear because of (45). Similarly,

〈k1|A1〈l1|B1
〈
�⊥

2

∣∣QTB 〈k1|A1〈l1|B1

∣∣�⊥
2

〉
(52)

=
d2−1∑
n=0

〈k1|A1〈l1|B1〈n|A2〈n|B2Q|k1〉A1|l1〉B1|n〉A2|n〉B2 � 0. (53)

Again, if either of these expectations is positive, we are done. If both are zero, then again
positivity implies that

〈m|A1〈m|B1〈k2|A2〈l2|B2Q|m′〉A1|m′〉B1|k′
2〉A2|l′2〉B2 = 0, (54)

〈k1|A1〈l1|B1〈n|A2〈n|B2Q|k′
1〉A1|l′1〉B1|n′〉A2|n′〉B2 = 0, (55)

with 0 � m,m′ < d1, 0 � n, n′ < d2. Finally, with these two expressions we see that〈
�⊥

1

∣∣〈�⊥
2

∣∣QTB
∣∣�⊥

1

〉∣∣�⊥
2

〉
(56)

=
d1−1∑
m=0

d2−1∑
n=0

〈m|A1〈m|B1〈n|A2〈n|B2Q|m〉A1|m〉B1|n〉A2|n〉B2 � 0. (57)

If this expectation is zero, then equations (44), (51), (53) and (57) combined imply

〈k1|A1〈l1|B1〈k2|A2〈l2|B2Q|k1〉A1|l1〉B1|k2〉A2|l2〉B2 = 0 (58)

for all 0 � ki, li < di; i = 1, 2, which in turn implies Tr(Q) = 0, which (since Q is positive)
would imply Q = 0. This completes our proof. �
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5. Conclusion

In this paper we have given a sufficient criterion for a given positive map to be indecomposable,
and we have used it to verify that two families of positive maps are not decomposable. While
this condition does not immediately give a method of constructing positive indecomposable
maps, it is a first step to examining the structure of these maps.

The conditions we placed on W(V) were at least as strong as enforcing this subspace
to contain no operators with a positive partial transpose, i.e., we might have expected that
it would be sufficient to enforce all operators in W(V) to have a negative eigenvalue under
partial transposition for our criterion. While we have been unable to prove this would be a
sufficient condition to restrict the form of the entanglement witness as required, we have not
disproved it either, and so this could be an issue for further exploration.

The first given example of a non-decomposable map was that given by Choi [8]. This
map C : B(C3) → B(C3) can be written in the form

2∑
k=0

(2PkkρPkk + 2Pk−1kρPk−1k) − ρ (59)

where Pij = |i〉〈j |, and we are assuming modulo 3 addition in the indices of these projectors
in the above expression. Unfortunately, we cannot seem to prove this map is not decomposable
by the criterion outlined in this paper. Since many of the examples of indecomposable maps
in the literature are generalizations of this map [9–14], it would be a sensible next step to see
if the condition above can be generalized in any way to include this important class of positive
maps. An even more ambitious but very useful step would be to see if this work can be used
to characterize some of the structure that may be present in a non-decomposable map.
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